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SUMMARY

Shared, trial-to-trial variability in neuronal popula-
tions has a strong impact on the accuracy of informa-
tion processing in the brain. Estimates of the level of
such noise correlations are diverse, ranging from
0.01 to 0.4, with little consensus on which factors ac-
count for these differences. Here we addressed one
important factor that varied across studies, asking
how anesthesia affects the population activity struc-
ture in macaque primary visual cortex. We found that
under opioid anesthesia, activity was dominated by
strong coordinated fluctuations on a timescale of
1–2 Hz, which were mostly absent in awake, fixating
monkeys. Accounting for these global fluctuations
markedly reduced correlations under anesthesia,
matching those observed during wakefulness and
reconciling earlier studies conducted under anes-
thesia and in awake animals. Our results show that
internal signals, such as brain state transitions under
anesthesia, can induce noise correlations but can
also be estimated and accounted for based on
neuronal population activity.

INTRODUCTION

A ubiquitous property of cortical neurons is their high degree of

response variability (Softky and Koch, 1993). Since repeated

presentations of the same stimulus never elicit the same

response twice, an accurate representation of the stimulus can

be obtained only by considering the joint response profile of pop-

ulations of neurons. The accuracy of such a population code

strongly depends on neuronal correlations (Averbeck et al.,

2006; Zohary et al., 1994; Abbott and Dayan, 1999; Sompolinsky

et al., 2001). Specifically, noise correlations, which express the

amount of covariability in the trial-to-trial fluctuations of re-

sponses of two neurons to repeated presentations of the same

stimulus, are central to such questions of coding accuracy.
In recent years, both the level and the origin of such noise cor-

relations have been subject to debate. While it was originally

suggested that noise correlations arise due to shared sensory

noise arising in the afferent sensory pathway (Zohary et al.,

1994; Shadlen and Newsome, 1998), more recent studies sug-

gest that they in fact represent meaningful top-down signals

generated internally to the brain (Cohen and Newsome, 2008;

Nienborg and Cumming, 2009; Ecker et al., 2010). Moreover,

the observed level of correlations varies greatly between studies,

with average values ranging from 0.01 to 0.4 (Bach and Krüger,

1986; Zohary et al., 1994; Gawne and Richmond, 1993; Gawne

et al., 1996; Bair et al., 2001; Kohn and Smith, 2005; Gutnisky

and Dragoi, 2008; Smith and Kohn, 2008; Cohen and Newsome,

2008; Mitchell et al., 2009; Cohen and Maunsell, 2009; Ecker

et al., 2010; Hansen et al., 2012; Smith et al., 2013; Smith and

Sommer, 2013; Herrero et al., 2013). It has recently been sug-

gested that much of the differences between studies may be ac-

counted for by differences in firing rates (Cohen and Kohn, 2011).

However, there are striking differences in correlations even be-

tween studies conducted in the same brain area with similar

stimuli and similar firing rates (e.g., Smith and Kohn, 2008; Ecker

et al., 2010), suggesting that the firing rate dependence is insuf-

ficient to explain the variability across studies and other factors

need to be taken into account as well.

One such factor that varies across studies is anesthesia. It

constitutes a drastic alteration of global brain state, the mecha-

nisms of which are only partly understood and depend on drugs

that are used (Campagna et al., 2003). One of the most striking

features of anesthesia, also observed during natural deep sleep,

are strong slow-wave oscillations in the electroencephalogram

(EEG) at frequencies below 2 Hz (Steriade et al., 1993). Many

commonly used anesthetics, such as isoflurane, urethane, and

ketamine, substantially alter neural activity by suppressing sen-

sory responses and increasing response latencies (Angel, 1993;

Drummond, 2000; Chi and Field, 1986; Kohn et al., 2009) as well

as inducing so-called up and down states (Renart et al., 2010;

Constantinople and Bruno, 2011; Harris and Thiele, 2011).

Some neuroscientists resort to opioids, such as fentanyl or su-

fentanil (Kohn and Smith, 2005; Smith and Kohn, 2008; Reich

et al., 2001), which are believed to affect neural activity in less

dramatic ways (Loughnan et al., 1987; Schwender et al., 1993;
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Drummond, 2000; Constantinople and Bruno, 2011). However,

although opioids seem to have a number of advantages over

other drugs, they have similarly been shown to affect neural

response properties (Schwender et al., 1993) and induce low-

frequency oscillations (Bowdle and Ward, 1989).

To shed light on how opioids modify the structure of neural

population activity, we measured noise correlations in primary

visual cortex of anesthetized and awakemonkeys using identical

recording techniques. Under anesthesia we observed periods of

almost complete silence across the population aswell as periods

of very strong activity. These periods lasted for a few hundred

milliseconds, arose spontaneously, andwere not linked to the vi-

sual stimulus. They resembled up and down states commonly

observed using nonopioid anesthetics (Renart et al., 2010; Con-

stantinople and Bruno, 2011; Harris and Thiele, 2011), and their

characteristic frequency was comparable to slow-wave oscilla-

tions in the EEG (Steriade et al., 1993). Interestingly, they could

be almost completely accounted for by a latent variable model

of the population activity with a single latent variable indicating

the network state. When we conditioned on this latent variable,

the magnitude and structure of noise correlations under anes-

thesia were almost indistinguishable from those we observed

previously in awake monkeys (Ecker et al., 2010).

Our results show that spontaneous transitions in network state

under anesthesia induce noise correlations between neurons.

These transitions are absent in awake, fixating monkeys. This

indicates a clear qualitative difference between the two states

despite similar firing rates. Thus, anesthesia is an important,

but often neglected, factor accounting for differences between

studies that cannot be explained by firing rates, as suggested

previously (Cohen and Kohn, 2011).

RESULTS

First- and Second-Order Statistics of Neuronal
Responses
We recorded the spiking activity of populations of neurons in pri-

mary visual cortex of awake and anesthetized macaque mon-

keys. We recorded from 487 neurons in two awake monkeys

and 636 neurons in three anesthetized monkeys. Our data set

consists of 58 recording sessions (31 awake and 27 anesthe-

tized), each containing 10 to 42 simultaneously recorded cells

(medians were 15 for awake and 23 for anesthetized recordings).

The awake data set is a subset of previously published data

(Ecker et al., 2010) (see Experimental Procedures for details).

We presented sinusoidal gratings covering the receptive fields

of all recorded neurons. Gratings were drifting, except in 14 of

the awake sessions where static gratings were shown.

As expected, neurons in V1 of awake monkeys were robustly

driven by the grating stimulus (Figure 1A), and the vastmajority of

cells were tuned to orientation (Figure 1B) (for this example ses-

sion: 27/29 cells; overall 82% or 400/487 cells at p < 0.01; per-

mutation test; not corrected for multiple testing). The same

was true for anesthetized recordings (Figures 1C and 1D), where

an even larger fraction of cells was tuned (example session: all 44

cells; overall 92% or 586/636 cells tuned at p < 0.01), probably

reflecting the fact that anesthetized recordings on average con-

tained larger amounts of data. Thus, when averaging spike trains
236 Neuron 82, 235–248, April 2, 2014 ª2014 Elsevier Inc.
across multiple trials, responses recorded during wakefulness

and under anesthesia were qualitatively similar, in the sense

that a large fraction of cells was robustly tuned to orientation.

We noticed, however, that anesthetized responses appeared

noisier than those recorded during wakefulness (Figures 1A and

1C). To test whether this impression was true at the population

level, we computed the Fano factors (variance of the response

divided by its mean) for all recorded neurons. Indeed, response

variability was roughly twice as large under anesthesia as during

wakefulness (Figure 2A) (average F= 2.2 versus 1.2, respectively;

p < 10�15, Wilcoxon rank-sum test). This was not due to system-

atic differences in firing rates between wakefulness and anes-

thesia, as it was true for the entire range of firing rates (Figure 2B).

This increased trial-to-trial variability could be a single-neuron

effect, where the anesthetic causes individual neurons to fire

more randomly, or a population effect, where groups of neurons

are comodulated by a common source present only under anes-

thesia. While the former would add independent noise and man-

ifest itself primarily in increased variances (and Fano factors), the

latter would also give rise to elevated noise correlations. Indeed,

the average level of correlations was roughly six times higher

under anesthesia than during wakefulness (Figure 2C) (0.05

versus 0.008, respectively; p < 10�15, Wilcoxon rank-sum test;

8,012 versus 3,878 pairs). Again, this difference was present at

the full range of firing rates and most prominent for pairs of cells

with high rates (Figure 2D).

State Fluctuations under Anesthesia
Our data seem to argue for a population-level effect of anes-

thesia, where many neurons are modulated simultaneously on

a trial-to-trial basis. Indeed, population raster plots showing

the activity of all simultaneously recorded neurons for a given

trial revealed periods of almost complete silence as well as

periods of vigorous activity (Figure 3C) (see e.g., trials 2

through 4). The transitions between such periods seemed to

arise spontaneously and were not linked to the stimulus, sug-

gesting that at least part of the increased variability was caused

by a common noise source.

To characterize this common source of variability in more

detail, we used a recently developed latent variable model called

Gaussian Process Factor Analysis (GPFA) (Figure 3A; Experi-

mental Procedures for details) (Yu et al., 2009). The GPFA model

promises to be a good candidate for capturing the phenomena

observed here, as it seeks to describe the correlations in the

data by a low-dimensional state variable, which evolves

smoothly in time and affects each neuron’s firing rate linearly.

We use the GPFA model to represent the fluctuations around

the stimulus-driven response (noise correlations):

ykðtÞ= fkðsðtÞÞ+ ckxðtÞ+ h: (1)

Here, fkðsðtÞÞ is the time-resolved tuning curve of neuron k,

which captures the stimulus-induced response dynamics; xðtÞ
is the network state, which is a one-dimensional function of

time; ck is the weight that determines how x affects the neuron’s

response; and h is independent Gaussian noise. The network

state x has a smooth autocorrelation function with timescale t

(Figure 3A; Experimental Procedures).
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Figure 1. Recordings of Population Activity in V1

(A) Spike rasters for a subset of the neurons recorded in one example session during wakefulness. The sinusoid at the top indicates the stimulus duration (500ms)

and its temporal frequency. Numbers, neuron numbers in (B), counted from left to right, top to bottom.

(B) Tuning curves for all neurons in the same session as in (A). Solid lines show least-squares fit, shown only for cells significantly tuned to orientation (27/29 cells

at p < 0.01; noncorrected).

(C) Spike rasters during anesthesia, as in (A).

(D) Tuning curves, as in (B); all 44 neurons significantly tuned at p < 0.001.
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Using such a latent variable model affords several advantages

over the traditional approach of computing pairwise correlations

and analyzing their relationship to other quantities such as signal

correlations or distance between neurons. First, the number of

parameters that need to be estimated is substantially lower

than when estimating the full correlation matrix. Second, if

there are processes contributing to the observed correlations

that affect many neurons at the same time, they can be esti-

mated more efficiently, and their timescale can be extracted

simultaneously.

The GPFA model with a single state variable captured the

structure and dynamics of the population response under anes-
thesia well. Visually, the estimate of the network state corre-

sponded well to the apparent on and off periods (Figure 3C).

We quantified how much explanatory power the network state

variable has under the two different brain states by computing

the fraction of variance explained (VE) (see Experimental Proce-

dures for details) on a separate subset of the data not used for

fitting the model. In the awake data set, the state variable ex-

plained on average less than 5% of the variance (Figures 3D–

3F). Strikingly, under anesthesia, up to 40% of individual cells’

variances were explained by network state (Figures 3E and

3F). To ensure that this effect was not due to longer trials in

our anesthetized experiments (2 s anesthetized versus 500 ms
Neuron 82, 235–248, April 2, 2014 ª2014 Elsevier Inc. 237
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Figure 2. Fano Factors and Noise Correlations during Wakefulness

(Blue) and Anesthesia (Red)

(A) Distribution of Fano factors. Arrows indicate means.

(B) Dependence of Fano factors on firing rates. Error bars indicate SEM.

(C) Distribution of noise correlations.

(D) Dependence of noise correlations on geometric mean firing rates.
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awake), we repeated the analysis on the anesthetized data using

only the first 500 ms of the response (Figure 3F, dashed line),

which reproduced the result obtained with the full response.

Generally, the fraction of VE was substantially higher for cells

with high firing rates (Figure 3F) and increased with the size of

the window over which spikes were counted (Figure 3G). This

effect was particularly strong under anesthesia, but much less

so during wakefulness.

To gain insights into the structure of variability induced by the

network state variable, we analyzed the key parameters of the

model: weights and timescale. The weight of a cell tells us how

the network state affects its firing rate. If all cells are comodu-

lated in the same direction, we expect mostly positive weights

and, thus, positive correlations between cells. If, on the other

hand, some cells are enhanced (positive weights) while others

are suppressed (negative weights), we expect mostly positive

correlations within each group and negative correlations across

groups. During wakefulness the weights were mostly distributed

around zero (Figures 4A and 4C; 65% positive), while during

anesthesia most weights were positive (Figures 4B–4D; 88%

positive). Note, though, that there is an ambiguity in the GPFA

model: one can always flip the sign of all weights without chang-

ing the model by simply flipping the sign of the latent variable

(see Equation 1). By convention, we set the sign such that the

majority of weights for each model are positive. We therefore

expect a fraction greater than 50% to have positive sign, even

in the absence of any effect (bootstrap 95% confidence intervals

under the null hypothesis were as follows: awake 61.6%–
238 Neuron 82, 235–248, April 2, 2014 ª2014 Elsevier Inc.
62.9% positive weights and anesthetized 59.2%–60.4%).

Thus, although it was significant (p = 2 3 10�9), only marginally

more neurons than expected by chance had positive weights

during wakefulness. Together with the finding above that the

model explained very little variance, this indicates that there

were no strong state fluctuations in our data during wakefulness.

Under anesthesia, in contrast, the weights were mostly positive

(p < 10�15), indicating that the firing rates of most cells were co-

modulated by a common term, which presumably caused the

elevated correlations observed above (Figures 2B and 2C) (we

will quantify below what fraction of the correlations is accounted

for by the network state variable).

The inferred timescale can help us to constrain our hypotheses

on the origin of the observed correlations. If the common noise

was due to shared sensory noise (Zohary et al., 1994; Shadlen

and Newsome, 1998), then its time constant should be relatively

small, corresponding roughly to themembrane time constants of

the postsynaptic cells (10–50 ms) (Mason et al., 1991; Shadlen

and Newsome, 1998). On the other hand, intrinsically generated

up and down states, which have been observed with many non-

opioid anesthetics, are much slower (<2 Hz) (Renart et al., 2010;

Constantinople and Bruno, 2011; Haider et al., 2013). More

consistent with the latter hypothesis, the timescale of the

network state dynamics during anesthesia was relatively slow.

The median width of the Gaussian temporal kernel was 207 ms

(Figure 4F). In the frequency domain this corresponds to a low-

pass cutoff frequency of 2.35 Hz (at �40 dB attenuation). This

estimate of the timescale appears somewhat higher than that

previously reported for anesthetized monkey V1 (Smith and

Kohn, 2008). However, this difference is caused bywhat appears

to be a bias in their method of estimating the timescale, rather

than reflecting a discrepancy between the two data sets (per-

forming the same analysis as they did showed that our data

set is consistent with theirs; see Supplemental Information for

an in-depth discussion of this issue). During wakefulness, in

contrast, a large fraction of timescale values were around

800 ms (Figure 4E; median 688 ms), which is substantially longer

than a single trial (500 ms). As the model does not take into ac-

count correlations of the network state across trials, this indi-

cates that the network state was essentially constant within a

trial. Thus, the strongest commonmodulations the model picked

up during wakefulness were, in addition to being much weaker,

substantially slower than the state fluctuations we observed

under anesthesia.

We next turned to the pairwise correlation structure and asked

to what extent it was explained by the network state fluctuations.

The raw correlation structure under anesthesia resembled that in

previous reports of anesthetized monkey V1 (Kohn and Smith,

2005; Smith and Kohn, 2008). Raw noise correlations were stron-

gest for pairs with high firing rates (Figure 5A) (see also Smith and

Sommer, 2013) and high signal correlations (Figure 5B). More-

over, they decreased significantly with the spatial separation be-

tween cells (Figure 5C). To determine to what degree the GPFA

model accounted for this correlation structure, we computed the

residual correlations after accounting for the network state. This

can be thought of as computing correlations by not only condi-

tioning on the stimulus but also on the network state (see Renart

et al., 2010). We found that the network state explained most of
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Figure 3. Gaussian Process Factor Analysis

(A) Schematic of the Gaussian Process Factor Analysis (GPFA) model. Spike count variability is generated by an unobserved (one-dimensional) network state (x)

linearly driving neural activity (weights c) plus independent noise (h). The network state evolves smoothly in time, which is modeled by a Gaussian Process with

temporal covariance shown at the top (correlation timescale t is learned from the data).

(B) Population rasters for an example session recorded in an awake animal. Each numbered row shows the rasters of all recorded neurons during a single trial. All

trials were under identical stimulus conditions (500 ms drifting grating, indicated by sine wave at the top). Blue line,estimate of the network state (x). The visible

rate modulations are locked to the phase of the stimulus, but not to the estimated network state (which in this case had very little explanatory power).

(C) As in (B), but under anesthesia. The estimated network state captures the population rate dynamics very well (see, for example, trials 2–4) but is unrelated to

the stimulus (stimulus duration: 2 s).

(D) Scatter plot of variance explained (VE) versus firing rate during wakefulness. Each dot is a single neuron under one stimulus condition. VE is computed in

500 ms windows.

(E) As in (D), but under anesthesia.

(F) Binned and averaged representation of (D) and (E). Error bars indicate SEM. Dashed lines indicate model fit on anesthetized data using only the first 500 ms of

each trial for better comparison with awake data (error bars omitted for clarity; they were comparable to those for the solid red line).

(G) Average VE versus size of integration window. Open circles indicate 500 ms window, which was used for (D)–(F). Dashed line indicates control

analysis as in (F).
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the difference in the magnitude and structure of noise correla-

tions betweenwakefulness and anesthesia. The residual correla-

tion structure under anesthesia resembled the raw correlation

structure during wakefulness remarkably well: except for pairs

recorded on the same tetrode, the differences were within the

margin of error (Figures 5A–5C). For pairs recorded on the

same tetrode, the residual correlations under anesthesia were

significantly higher than during wakefulness (Figure 5C; see Dis-

cussion). Accounting for network state did not alter the correla-
tion structure during wakefulness. This finding was expected

due to the low fraction of variance captured by the model during

wakefulness (Figure 3F).

Model of State Fluctuations as Common Gain
The analysis of residual correlations showed that the correlation

structure changed when accounting for network state: the firing

rate dependence was nearly abolished (Figure 5A), and both

the relation with signal correlations and with distance were
Neuron 82, 235–248, April 2, 2014 ª2014 Elsevier Inc. 239
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Figure 5. Accounting for Network State Reduces Noise Correlations

under Anesthesia
(A–C) Raw (solid lines) and residual (after accounting for network state; dashed

lines) noise correlations during wakefulness (blue) and under anesthesia (red).

Dependence on firing rates (A), signal correlations (B), and distance between

cells (C). Raw correlations in (A) are as in Figure 2D, except that here the model

is fit for each condition separately. Error bars indicate SEM.
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Figure 4. GPFA Model Parameters

(A–F) Distribution of weights (variable c, Equation 1) during wakefulness (A)–(C)

and under anesthesia (B)–(D). Timescale of network state dynamics during

wakefulness (E) and under anesthesia (F). The timescale is the SD (t) of the

Gaussian temporal correlation function of the latent variable (x) in the GPFA

model.
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weakened substantially (Figures 5B and 5C). This may seem

counterintuitive at first, since all neurons are modulated by the

same common network state variable, and thus, onemay expect

a uniform effect on all neurons. However, since the network state

can affect different neurons with different weights and those

weights may depend on the stimulus, network state fluctuations

can induce a nonuniform correlation structure. In our data, the

weights were positively correlated with firing rates (data not

shown), indicating that the network state acted as a common

gain, modulating each neuron’s firing rate multiplicatively.

To understand how such fluctuations in common gain would

affect the correlation structure, we considered a simple network

model: the firing rate of each neuron was determined by its tun-

ing curve, which was multiplied by a common gain, and neurons

spiked according to independent, inhomogeneous Poisson pro-

cesses (Figure 6A; see Experimental Procedures for details). The

gain term was fluctuating randomly with temporal correlations
240 Neuron 82, 235–248, April 2, 2014 ª2014 Elsevier Inc.
matching those in the data (�200 ms). This simple model was

able to reproduce both the firing rate dependence of noise cor-

relations in our data and their dependence on signal correlations

quite naturally (Figures 6B and 6C). To capture the spatial depen-

dence of correlations, we would have to include spatial structure

(e.g., by replacing the global gain by one that can vary across

space with a certain correlation structure). However, we do not

pursue the question in more detail here, since the main point of

the model is to illustrate that very simple mechanisms can cause

remarkably nonuniform correlation structures. A similar model

has been proposed recently by another group to model slow

changes in excitability and their effect on response variability

(Goris et al. 2013; see also Supplementary Material of Ecker

et al., 2010).

Spontaneous Activity
We next asked whether the state fluctuations observed under

anesthesia were also present during spontaneous activity in

the absence of visual stimulation. To address this question, we

analyzed the blank periods between subsequent stimulus pre-

sentations. The results essentially mirrored those obtained dur-

ing visual stimulation (Figure 7). VE increased with both firing

rates and the size of integration window (Figures 7A–7C).

Weights were almost exclusively positive (96%, Figures 7D

and 7E), and the timescale of the network state was comparable

to that during visual stimulation (Figure 7F; median was 179 ms;
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Figure 6. Model of State Fluctuations as Common Fluctuations in

Excitability

(A–C) Illustration of the model. Cells have tuning curves with identical shapes

and regularly spaced preferred orientations. Each cell’s firing rate is given by

the tuning curve multiplied by the common gain, which changes slowly as in

our data. Spikes are generated by independent inhomogeneous Poisson

processes with the given rates. The resulting noise correlations increase with

firing rates (B) and signal correlations (C), as in the data.
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cutoff frequency was 2.75 Hz). As for the evoked responses,

residual correlations after accounting for network state were pro-

foundly reduced (Figures 7H–7J).

Local Field Potential as a Predictor of Global Network
State
We showed that under anesthesia most neurons are affected in a

similar way by the network state, and this network state can

change on a timescale of a few hundred milliseconds. If the ef-

fect is as global as it appears, we should find its signature in

more global measures of neural activity, such as the local field

potential (LFP). We thus asked whether the low-frequency range

of the LFP correlated with the network state we inferred above.

This was indeed the case for all three anesthetized, but for

none of the awake, animals (Figures 8A and 8B). The magnitude

of the correlation was strongest at zero time lag and had addi-

tional peaks/troughs of opposite sign at time lags of ±500 ms

between LFP and inferred network state.

If the low-frequency range of the LFP is correlated with the

network state, it should be possible to use it to predict the

trial-to-trial variability observed under anesthesia. To verify

this, we followed the approach taken by Kelly et al. (2010) and

fitted a generalized linear model (GLM) with the low-pass-filtered

LFP as input (see Experimental Procedures for details):

mðtÞ= expðaðtÞ+buðtÞÞ: (2)

Here mðtÞ is the firing rate, aðtÞ the stimulus response (PSTH),

and uðtÞ the LFP, all of which are functions of time. The linear

weight b determines by how much a change in the LFP affects
the firing rate of the neuron. During wakefulness the LFP weights

were distributed mostly around zero (Figure 8C), whereas under

anesthesia they were mostly negative (Figure 8D).

In summary, the network state we inferred above in an unsu-

pervisedway from spiking data alone (GPFAmodel) has its phys-

iological counterpart in the low-frequency oscillations in the LFP.

Both the low-frequency oscillations and the apparent network

state fluctuations in the spiking activity of local populations are

pronounced under anesthesia but relatively small, if not absent,

during awake fixation.

Finally, our analysis so far has focused on comparing wakeful-

ness and anesthesia using different cells recorded in different

animals. However, anesthesia has multiple different stages,

with light anesthesia being characterized by relatively de-

synchronized EEG activity, whereas deep anesthesia displays

strong, coherent network oscillations. We therefore asked

whether we could use the LFP to find evidence for slow changes

in brain state (depth of anesthesia) within recording sessions.

Indeed, in many sessions we observed slow changes in LFP

power in a low-frequency range and sometimes in the gamma

range (Figures 9A and 9B). To quantify these changes, we

computed an LFP power ratio in windows of approximately

90 s (power at 0.5–2 Hz divided by that in the gamma band,

30–70 Hz) (Goard and Dan, 2009), which we used as a proxy

for depth of anesthesia. This power ratio displayed changes on

timescales of a few minutes up to half an hour and longer (Fig-

ures 9C and 9D, black lines). Remarkably, the time-resolved

LFP power ratio was tracked very closely by the total correlation

in the network as measured by the variance of the network state

variable inferred by the GPFA model (Figures 9C and 9D, red

lines). Across all sessions, the LFP power ratio and the overall

level of correlations were significantly correlated (Figure 9E;

Spearman’s r = 0.42, p < 10�15). This correlation was positive

and significant in 19/27 individual sessions (p < 0.05, uncorrec-

ted). Thus, the degree of network-wide correlations varied within

a recording session in the same cells over the course of several

minutes and correlated well with more traditional, LFP- or EEG-

based measures of brain state or depth of anesthesia.

DISCUSSION

State Fluctuations under Opioids
We demonstrated a striking feature of cortical activity under

opioid anesthesia that had previously not been appreciated:

neurons undergo spontaneous coordinated transitions between

states of almost complete silence, highly elevated levels of activ-

ity, and intermediate levels of activity. These state transitions

resemble up and down states, which have been described pre-

viously for other, nonopioid anesthetics (Steriade et al., 1993;

Renart et al., 2010; Constantinople and Bruno, 2011), and they

occur on a timescale of several hundred milliseconds. In addi-

tion, the strength of these state fluctuations can change slowly

over several minutes, which may reflect slow changes in the

depth of anesthesia.

Although the effect of opioid anesthetics may be less dramatic

than that of nonopioids such as urethane, isoflurane, or ketamine

(Constantinople and Bruno, 2011; Movshon et al., 2003; Kohn

et al., 2009; Smith and Sommer, 2013), it should be emphasized
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B C Figure 7. GPFA Model during Spontaneous

Activity under Anesthesia

(A and B) VE versus firing rates (as in Figures

3D–3F).

(C) VE versus integration time (as in Figure 3G).

(D and E) Distribution of weights (as in Figures

4B–4D).

(F) Distribution of timescales (as in Figure 4G).

(G–I) Residual correlations versus firing rate,

signal correlation, and distance, respectively (as in

Figures 5A–5C).
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that they still have a substantial effect on neural responses, ex-

plaining on average more than one third of the variance of cells

firing at rates of more than 10 spikes/s (Figure 3). Since the effect

is largely common to all cells within a few millimeters of cortex, it

becomes particularly evident when considering populations of

simultaneously recorded neurons and substantially biases the

structure of noise correlations compared with awake recordings.

We are aware of two reports that directly addressed the

effect of opioids and found no differences to the awake state

(Loughnan et al., 1987; Constantinople and Bruno, 2011).

Although they may superficially appear at odds with our results,

this is not the case. One study measured the average sensory-

evoked EEG response in humans (Loughnan et al., 1987) and

found no difference between anesthetized and awake subjects.

While this finding is consistent with our results that sensory re-

sponses were intact, it does not rule out spontaneous state tran-

sitions, as those would have been averaged out. The other study

measured membrane potential fluctuations in single neurons

(Constantinople and Bruno, 2011). It is possible that opioids

act more subtly than other anesthetics, not inducing the bimodal

distribution of membrane potentials that typically characterizes

up and down states (Petersen et al., 2003; Constantinople and

Bruno, 2011), but nevertheless leading to global fluctuations

in spiking output that are strong enough to be picked up when

recording populations of neurons simultaneously. Another

important point to be noted is that the two studies cited above
242 Neuron 82, 235–248, April 2, 2014 ª2014 Elsevier Inc.
were conducted under much lighter anes-

thesia. The fentanyl doses used (3 mg/kg

bolus and 10 mg/kg/hr, respectively)

were substantially lower than the mini-

mum equivalent sufentanil dose used in

acute primate experiments (our study,

Smith and Kohn, 2008, and Kelly et al.,

2010: 4–15 mg/kg/hr sufentanil, equiva-

lent to 40–150 mg/kg/hr fentanyl). Thus,

the differences in depth of anesthesia,

different measures of neural activity, or

differences between species could ac-

count for the differences between these

studies and ours.

State Fluctuations during
Wakefulness
State transitions similar to those we

observed under anesthesia have been
observed in rodents also during wakefulness. Poulet and

Petersen (2008) found that periods of inactivity (termed quiet

wakefulness) resembled the anesthetized state. Both the intracel-

lular membrane potentials and the LFP displayed increased po-

wer in the low frequencies, similar to our and other labs’ findings

under anesthesia, and spikes were tightly locked to those oscilla-

tions. During periods of active whisking, in contrast, somatosen-

sory cortex was in a desynchronized state that resembled our

awake results. In addition, Niell and Stryker (2010) showed that

the firing rates of neurons in primary visual cortex of mice depend

strongly on whether the mouse is still or running on a treadmill.

Although they did not explicitly test whether response variability

or properties of the LFP were different between the two states,

their findings support the idea that the cortex can switch between

different states of activity during wakefulness.

While slow changes in excitability of single neurons and pop-

ulations have been reported (Bair et al., 2001; Goris et al., 2013),

state fluctuations occurring at the timescale of a few hundred

milliseconds have to our knowledge not been observed in the vi-

sual system of awake, behaving primates. One could speculate

that this is due to a species difference between rodents and pri-

mates. However, it seems more likely that we did not observe

such quiet states during our awake experiments because the

monkeys had to actively initiate a trial by moving their eyes to

the fixation spot and maintain fixation throughout the trial,

actively suppressing their natural reflex to move the eyes several
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Figure 8. Local Field Potential Is Correlated with Inferred Network
State and Predicts Trial-to-Trial Variability under Anesthesia but

Not during Wakefulness

(A) Cross-correlation between low-frequency LFP (0.5–5 Hz) and network state

inferred by GPFA model during wakefulness. Gray lines indicate individual

sessions; blue line indicates average across all sessions.

(B) As in (A), but under anesthesia.

(C) Distribution of LFPweights in Generalized LinearModel taking stimulus and

LFP into account; during wakefulness.

(D) As in (C), but under anesthesia.
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Figure 9. LFP Power Ratio Correlates with Overall Level of Noise

Correlations

(A and B) Spectrogram of LFP over the course of two example recordings

(�90 min).

(C and D) LFP power ratio (black line, power in 0.5–2 Hz band divided by that in

the gamma band, 30–70 Hz) and average level of correlations (red line, vari-

ance of the network state inferred by GPFA) for the same sessions. Both

quantities are normalized by the session average.

(E) Population analysis. LFP power ratio versus overall correlation (variance

of network state inferred by GPFA) in 20 separate blocks per recording (27

recordings in total; i.e., n = 540). Both quantities normalized by the session

average for each session. One outlier cropped for clarity.
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times per second. This required oculomotor action before and

during the stimulus could trigger an active state similar to whisk-

ing or running in rats and mice.

This action to initiate a trial may be an important difference be-

tween experiments in the visual system of awake monkeys and

rodents. Unlike with monkeys, in most studies of the rodent vi-

sual system the animals do not have to actively initiate a trial,

but stimuli are presented periodically. To obtain a similar level

of control over the brain state, one would have to either infer it

post hoc from recordings of locomotion, eye, or whisker move-

ments or—as we did in this study—directly from neuronal popu-

lation activity. Since this is not usually done (but see Poulet and

Petersen, 2008; Niell and Stryker, 2010), many data sets

collected in awake rodent visual cortex are likely to contain a

mixture of brain states. We, therefore, do not expect large differ-

ences between wakefulness and anesthesia in such cases, a

hypothesis corroborated by a recent study of noise correlations

in mouse V1 (Denman and Contreras, 2013).

Role of Firing Rates
Could the difference between our awake and anesthetized data

be attributed to factors other than anesthesia? It has been sug-

gested that the low correlations wemeasured in awakemonkeys
were a result of unusually low firing rates (Cohen and Kohn,

2011). However, this is not a viable explanation since firing rates

were similar in our awake and anesthetized recordings, and they

were comparable to (in fact, slightly higher than) those reported

by other labs using similar stimuli in the same cortical area as in

our present study (Smith and Kohn, 2008: 3.4 spikes/s; this

study, awake: 5.4 spikes/s and anesthetized: 5.0 spikes/s). In

addition, the difference between awake and anesthetized corre-

lations was evident at the full range of firing rates (Figure 2), and

the firing-rate dependence of correlations in our anesthetized

data set resembled that reported by other labs in anesthetized

monkey V1 (Smith and Kohn, 2008; Smith and Sommer, 2013).

In summary, while firing rates certainly contribute to differences

between studies to some extent, they cannot account for the dif-

ference between wakefulness and anesthesia.
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Role of Cortical Layers
Recent studies suggest that noise correlations are low in the

granular layers of V1, raising the possibility that our awake re-

cordings were mostly restricted to those layers (Hansen et al.,

2012; Smith et al., 2013). If this was the case, the effects we

describe in this study could be caused by laminar differences,

rather than reflecting a difference between wakefulness and

anesthesia. Based on our data, we cannot rule out this possibility

entirely, but a number of observations argue against it. Although

in our anesthetized experiments we recorded throughout all

layers and tried to adjust all tetrodes to a similar depth for

each recording, we were unable to identify the region of low cor-

relations. This is most likely owed to the limitations of our exper-

imental approach. Tetrodes have a blunt tip, presumably causing

more tissue displacement than single electrodes with small, bev-

eled tips, making the point of entry into the brain a poor reference

to estimate laminar location. In addition, we did not reach white

matter with all tetrodes before the end of the experiment, pre-

cluding the use of white matter as a reference. Furthermore, tet-

rodes have much lower impedances than single electrodes.

Therefore they probably sample cells from a larger volume. We

thus expect considerable variability in both the laminar location

of the tetrodes and our estimates thereof. Since the region of

low correlations reported previously (Hansen et al., 2012; Smith

et al., 2013) is a narrow strip of 200–300 mm, it may not be

surprising that we were unable to identify it. However, for the

same reasons it seems implausible that laminar variation should

explain the low correlations we observed during wakefulness.

For this to be the case, most of our tetrodes should have been

located in exactly this narrow region. Yet, unlike in our anesthe-

tized experiments, we neither adjusted the tetrodes together nor

did we target any specific layer, but instead we adjusted each

tetrode to a position where it isolated cells. In addition, between

awake recording sessions we sometimes adjusted the tetrodes,

in total by up to 600 mm (median was�300 mm) between the first

and the last experiment. As a result, we should either have been

able to localize the region of low correlations during anesthesia

or we likely recorded from outside it as well during wakefulness,

suggesting that the effect we describe is not simply explained by

laminar differences.

Relation to Other Studies of Noise Correlations in the
Primate Visual System
Bymodeling the state fluctuations under anesthesia with a latent

variable model (GPFA), we recovered the residual correlation

structure, which was remarkably similar to that observed in the

awake monkey. This finding reconciles the results of previous

studies conducted in V1 under anesthesia with our awake,

fixating data (Ecker et al., 2010). The raw correlation structure

we observed under anesthesia is entirely consistent with previ-

ous reports using the same preparation (Kohn and Smith,

2005; Smith and Kohn, 2008). The higher average level of corre-

lations during anesthesia (Reich et al., 2001; Kohn and Smith,

2005; Smith and Kohn, 2008) is accounted for by the one-dimen-

sional network state variable. The LFP can be used to predict

some of these state fluctuations under anesthesia, which has

been reported previously (Kelly et al., 2010). Interestingly, recent

work suggests that much slower changes in excitability (on the
244 Neuron 82, 235–248, April 2, 2014 ª2014 Elsevier Inc.
order of minutes)—which we explicitly excluded from our anal-

ysis—are also stronger under anesthesia than during wakeful-

ness (Goris et al., 2013). Finally, another study characterizing

higher-order correlations in anesthetized monkey V1 (Ohiorhe-

nuan et al., 2010) reports an excess probability of silence in

triplets of neurons, suggesting that the periods of almost com-

plete silence we observe are also present in other anesthetized

preparations.

Some discrepancies remain between the papers discussed

above (Kohn and Smith, 2005; Smith and Kohn, 2008; Reich

et al., 2001; Ohiorhenuan et al., 2010; Ecker et al., 2010) and

some other studies. For instance, some authors report substan-

tially higher noise correlations in awake monkey V1 (0.2–0.4)

(Gutnisky and Dragoi, 2008; Hansen et al., 2012; Herrero et al.,

2013) than we did (Ecker et al., 2010). Note that in addition to

substantially higher average firing rates, these studies typically

also observed relatively high Fano factors (F > 2; Gutnisky and

Dragoi, 2008; Herrero et al., 2013; our awake data: average F =

1.1, Figure 2A), indicating that either different cell populations

were sampled or additional confounding factors were present

that were not accounted for (e.g., as argued in Ecker et al.,

2010; Bair et al., 2001). For instance, accounting for eye move-

ments reduced the correlations by almost 50% in Hansen et al.

(2012) (their Figure S3).

Correlations between Nearby Neurons
Similar to other authors (e.g., Smith and Kohn, 2008; Cohen and

Maunsell, 2009), we focused mainly on pairs recorded by

different electrodes. For such pairs, accounting for the network

state under anesthesia reduced the noise correlations consis-

tently below 0.01, similar to the level observed during wakeful-

ness. However, a notable observationwemadewas that residual

correlations between pairs recorded by the same tetrode were

still higher under anesthesia than duringwakefulness (Figure 5C).

This could reflect an additional, more local contribution of anes-

thesia that was not captured by the single latent variable in our

model. Alternatively, theremay be some degree of heterogeneity

in the local connectivity, which gives rise to different levels of

correlation depending on where one records from (e.g., close

to pinwheels versus linear zones or differences between layers).

Indeed, when we reanalyzed the awake data, focusing on pairs

recorded by the same tetrode, we observed some differences

between the two monkeys. In one monkey, signal correlations

for pairs recorded on the same tetrode were close to zero

(average 0.025) and so were the noise correlations (average

0.006), while in the other monkey signal correlations were posi-

tive (0.24) and noise correlations were somewhat higher as well

(0.045). The latter is more consistent with the anesthetized re-

sults (average signal correlations: 0.17; average residual noise

correlations: 0.065). It is possible that we sampled cells in a

more unbiased fashion in our anesthetized experiments, in which

we recorded from more monkeys and more individual tetrodes

than in our awake data set. To reach a definite conclusion

regarding the structure and level of correlations for neurons

separated by less than 200 mm and to resolve the potential

contribution of cortical layers, more extensive future experi-

ments with high-density laminar probes (Blanche et al., 2005)

are needed.
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CONCLUSIONS AND FUTURE DIRECTIONS

Most of what we know today about the early visual system

we learned through studies in anesthetized animals (e.g., Hubel

and Wiesel, 1968; Zeki, 1974; De Valois et al., 1982a, 1982b;

Movshon et al., 1985; Carandini et al., 1997). The acute anesthe-

tized preparation is undoubtedly an extremely valuable tool that

offers many advantages for studying the early visual system (no

training of animals, no issues due to eye movements/microsac-

cades, longer experiments with more trials, etc.). For instance,

receptive fields or tuning curves can be measured under anes-

thesia just as well as in the awake animal.

More recently, however, many groups have started to charac-

terize the joint activity patterns of pairs and groups of neurons

(Zohary et al., 1994; Gawne and Richmond, 1993; Gawne

et al., 1996; Bair et al., 2001; Reich et al., 2001; Kohn and Smith,

2005; Smith and Kohn, 2008; Gutnisky and Dragoi, 2008; Ecker

et al., 2010; Berens et al., 2012), and both the origin and the im-

plications of neuronal correlations have been of great interest

(Zohary et al., 1994; Shadlen and Newsome, 1998; Abbott and

Dayan, 1999; Sompolinsky et al., 2001; Averbeck et al., 2006;

Cohen and Newsome, 2008; Josi�c et al., 2009; Nienborg and

Cumming, 2009; Ecker et al., 2011). For these studies it is impor-

tant to distinguish between different sources of correlation: if the

network transitions from one state to another, such widely

distributed dynamics can quickly become the dominant source

of (co)variance. However, if such state transitions do not occur

in alert animals paying attention to or interacting with their envi-

ronment, the functional relevance of these correlations may

be very different from those originating from shared input in

the feed-forward signal chain of upstream neurons. Thus, one

should be aware of possible state fluctuations and, if necessary,

take them into account. While some authors have done so by

considering only data during those periods where the brain

was in a certain state (e.g., Renart et al., 2010) or incorporating

global signals such as the LFP directly into the response model

(Kelly et al., 2010), our study showed that in some situations

the network state may also be inferred directly from population

data using a latent variable model (Figures 3–5).

Latent variable models like the one we used in this study

(GPFA, Yu et al., 2009; see also Macke et al., 2011; Buesing

et al., 2012) are powerful tools for future studies of neuronal

population activity. In light of current and future technological de-

velopments, the number of neurons that can bemonitored simul-

taneously will increase substantially. The amount of time that can

beused to collect data, however, is and remains limited byexper-

imental and ethical constraints. Thus, an accurate characteriza-

tion of the joint population response will be feasible only if

much of the variability is restricted to a relatively low-dimensional

subspace. Fortunately, this is very likely to be the case if our orig-

inal hypothesis is correct andmost of thecorrelations observed in

awake animals are driven by unobserved internal signals rather

than by shared sensory noise (Ecker et al., 2010). In this case,

latent variable models will not only afford a parsimonious statisti-

cal description of neuronal population data, but they may also

provide us with a method to read out internal signals, such as

the focus of attention (Cohen and Maunsell, 2010), task strate-

gies, or many more, in real time on a trial-by-trial basis.
EXPERIMENTAL PROCEDURES

Electrophysiology in Awake Monkeys

We recorded from two adult, male rhesus monkeys (macaca mulatta) using

chronically implanted tetrode arrays. The awake data set used in this study

is a subset of a data set analyzed previously (Ecker et al., 2010; Berens

et al., 2012) (see below for inclusion criteria). Surgical methods and recording

protocol for our awake experiments have been described previously (Tolias

et al., 2007; Ecker et al., 2010).

Electrophysiology in Anesthetized Monkeys

In acute experiments lasting 4–5 days, we recorded from three adult, male rhe-

sus monkeys (macaca mulatta) using the same 24-tetrode arrays as in the

awake recordings. Surgical details are described in the Supplemental Exper-

imental Procedures. Prior to each set of recordings, all tetrodes were adjusted

to a new target depth approximately 200 mmdeeper than the previous one. The

exact amount of adjustment varied by tetrode, leaving tetrodes (if possible) at a

position where cells could be isolated. Throughout the experiments anesthesia

was maintained by intravenous infusion of sufentanil (4–15 mg/kg/hr; protocol

similar to Kohn and Smith, 2005; Smith and Kohn, 2008). Animals were para-

lyzed using vecuronium bromide by intravenous infusion (100 mg/kg/hr). The

pupils were dilated by topical application of cyclopentolate. Refraction was

provided by contact lenses. Stimuli were presented monocularly; the other

eye was closed and covered. The open eye was kept irrigated using saline.

Vital signs (ECG, heart rate, respiratory rate and volume, blood pressure,

temperature, CO2, O2, and SpO2) were monitored continuously. All experi-

mental procedures complied with guidelines approved by the Baylor College

of Medicine Institutional Animal Care and Use Committee (IACUC).

Visual Stimuli/Behavioral Paradigm

Visual stimuli were drifting gratings (16 different directions of motion) under a

circular aperture presented at full contrast on gray background using the Psy-

chophysics toolbox for Matlab (Brainard, 1997). In a subset of awake experi-

ments, stimuli were static gratings (eight orientations), partly at lower contrasts

(see Ecker et al., 2010 for details). Because of space constraints in the anes-

thetized setup, we used an LCD monitor running at a refresh rate of 60 Hz

and positioned at a distance of 55 cm to the eye during our anesthetized ex-

periments. The stimuli for awake monkeys were presented on CRT monitors

running at 100Hz and positioned at a distance of 100 cm. To address concerns

previously raised about low firing rates in our data (Cohen and Kohn, 2011), we

reduced the size of the stimuli during the anesthetized experiments to 2�–3� in
diameter, compared with 4� in awake experiments. We ensured that the grat-

ings covered the receptive fields of all neurons by mapping multiunit receptive

fields of most tetrodes manually before each recording session. Temporal fre-

quency was 3.4 cycles/sec for all sessions. Spatial frequency varied between

3–6 cycles/deg, roughly matching the preferences of the recorded cells due

to some variability in eccentricity of recording locations (estimated between

1�–4� from the fovea). Stimulus conditions were randomized in blocks of

16 trials to ensure a balanced number of repetitions.

In awake experiments, trials were initiated by a sound and the appearance of

a fixation target (�0.15�). After themonkey fixated for 300ms, the stimulus was

shown for 500 ms, and the monkey had to fixate for another 300 ms. Monkeys

were required to fixate within a radius of 0.5�–1�, but typically fixated much

more accurately, as revealed by offline analysis. Monkeys were rewarded by

a drop of juice upon completion of a successful trial.

In anesthetized experiments, stimuli were shown for 2 s, separated by blank

periods with a gray screen lasting approximately 1.1–1.6 s (randomly drawn

from a uniform distribution).

Spike Detection and Sorting

Our data processing methods are based on previously published work (Tolias

et al., 2007) but have been revised since the original report. A detailed descrip-

tion can be found in the Supplemental Experimental Procedures. Briefly,

spikes were detected offline when the signal on any of the four channels

crossed a threshold of five times the SD of the noise. After spike alignment,

we extracted the first three principal components on each channel, resulting

in a 12-dimensional feature vector used for spike sorting. To deal with
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waveform drift, we fit a mixture model that uses Kalman filters to track chang-

ing cluster means over time (Calabrese and Paninski, 2011). Single unit isola-

tion was assessed quantitatively using the mixture model. Since the focus of

this paper is on global fluctuations that are distributed among many tetrodes,

spike-sorting errors are unlikely to play an important role; they would affect

primarily pairs recorded by the same tetrode (Ecker et al., 2010). Therefore,

we included all units flagged as single units in the analysis to increase statisti-

cal power. The sum of the false positive rate and the false negative rate

was less than 10% for 62% of the single units in our data set and less than

20% for 83% of the single units (awake: 63% and 82%; anesthetized: 61%

and 83%).

Data Set and Inclusion Criteria

We recorded from two awake and three anesthetized monkeys, a total of 46

and 30 recording sessions, respectively. We included recording sessions

where gratings were shown for at least 500 ms per trial, at least 20 trials per

condition, and at least 10 single units with stable firing rates were recorded.

Firing rate stability was assessed by computing the long-term component of

the trial autocorrelogram (Bair et al., 2001), which we estimated by taking a

weighted average (Gaussian window with SD of eight trials) around zero,

excluding the bin at zero lag (which is one by definition). Units were considered

stable if the long-term component of the trial-autocorrelationwas less than 0.1.

These criteria resulted in 31 awake and 27 anesthetized recording sessions

with 487 and 636 single units, respectively. The stability criterion was impor-

tant since the anesthetized experiments were performed acutely and tetrodes

were adjusted every 8–10 hours. Due to this criterion we excluded 73 of 560

cells (13%) from our awake dataset and 293 of 929 cells (32%) from our anes-

thetized dataset. An obvious consequence of this procedure is that drifts in

firing rates over slow timescales (Goris et al., 2013), possibly due to physiolog-

ical reasons, would not be recovered by our analysis even if they are common

tomultiple cells (see Supplemental Experimental Procedures for a discussion).

Data Analysis/Availability of Code and Data

Data analysis was done inMatlab using a data analysis frameworkwithMySQL

database backend (DataJoint: https://github.com/datajoint; D. Yatsenko, Tol-

ias Lab, Baylor College ofMedicine). The complete data set, and code used for

data processing, data analysis, and creating the figures in this article are avail-

able at http://toliaslab.org/publications/ecker-et-al-2014.

Orientation Tuning

We assessed the significance of orientation tuning by a permutation test. We

first extracted the magnitude of the second Fourier component (i.e., orienta-

tion) by projecting the vector of average responses for each orientation onto

a complex exponential with two cycles:

q=
X16
k =1

hrikexp
�
pik

4

�
; (3)

where hrik is the average response to the kth direction of motion. We compared

jqj to its null distribution, which we obtained by shuffling the trial labels. We ran

1,000 iterations of the shuffling procedure and used the fraction of runs with jqj
greater than that observed in the real data as the p value.

Fano Factors/Noise Correlation Analysis

Fano factors and noise correlations were computed on the first 500 ms of the

response for both awake and anesthetized experiments. Fano factors were

computed as the variance of the spike count divided by its mean. Noise corre-

lations were computed as the Pearson correlation coefficient of two neurons’

responses to identical repetitions of the same stimulus condition, averaged (for

each pair) over all stimulus conditions with nonzero firing rates in both neurons.

GPFA

A detailed description of the GPFAmodel and the derivation of the Expectation

Maximization (EM) algorithm to fit it can be found in Yu et al. (2009). Here we

describe only the key points.

The GPFA model is described in the main text (Equation 1; Figure 3). We

extracted spike counts in each trial during the stimulus period in T nonoverlap-
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ping bins of 100 ms starting 30 ms after stimulus onset (awake: T = 5, anesthe-

tized: T = 20). We square-root-transformed spike counts to stabilize the

variances (Yu et al., 2009). Before fitting the model, we subtracted the average

across trials for each stimulus condition and time bin. This procedure removes

systematic contributions by the stimulus, and thus, themodel explains only the

trial-to-trial variability. Note that in this case both the network state x and the

observed (transformed) spike counts y have zero mean (over trials) in each

bin. The noise covariance under this model is given by

Cov½y�= cc
0
+R; (4)

where the prime ð0Þ denotes the transpose, y are the square-root-transformed

and mean-subtracted spike counts, c is a vector of linear weights mapping

network state to firing rate, and R is a diagonal matrix of residual (independent)

variances. We fitted the model for each stimulus condition independently to

allow the weights to depend on the stimulus (this was indeed the case; weights

increased with firing rates, which was reflected in both the increase of corre-

lations and VE with firing rates, Figures 2 and 3). Units were included in the

model in all stimulus conditions where they fired at least 0.5 spikes/s during

the stimulus period.

The network state x was assumed to evolve smoothly in time. This was

achieved by modeling its temporal correlations by a Gaussian kernel

KijhCov½xðtiÞ; xðtjÞ�= exp

 
� ðti � tjÞ2

2t2

!
: (5)

To keep the algorithm computationally tractable, we set temporal correlations

in network state extending across trials to zero.

To evaluate the fraction of variance explained (VE) (Figure 3) and the residual

correlations (Figure 5), we used an independent test set that had not been used

for fitting the model. Training and test set consisted of the first and second half

of the data (and vice versa; i.e., 2-fold cross-validation). We fit the model on

spike counts in 100 ms windows, but residual correlations and VE can also

be evaluated for larger counting windows by summing up variances and (tem-

poral) covariances over several time bins. VE (Figure 3) and residual noise cor-

relations (Figure 5) were calculated for 500 ms windows, since this was the

maximum available in the awake data set. For details on how to compute VE

and residual correlations, see Supplemental Experimental Procedures.

Model of Common Gain Modulation

Themodel population (Figure 6) consisted of 64 neuronswith uniformly spaced

preferred orientations and von Mises tuning curves given by

fkðqÞ= expðk cosð2ðq� 4kÞÞ+aÞ; (6)

where 4k is the preferred orientation, k= 2, and a= 1:8, resulting in a bandwidth

of�25� (half-width at half-maximum) and a peak firing rate of 45 spikes/s. The

firing rate of each neuron was determined by the product of its tuning curve

and the value of the common gain

mkðtÞ= gðtÞ,fkðqÞ: (7)

The gain had E½g�= 1 and its temporal autocorrelation was a Gaussian kernel

KjkhCov½gðtjÞ;gðtkÞ�= s2exp

 
� ðtj � tkÞ2

2t2

!
; (8)

with s= 0:15 and t = 200 ms. We sampled independent Poisson spike counts

from the given rates mðtÞ. As for the data, we used bins of 100 ms and

computed correlations in bins of 500 ms.

Analysis of Spontaneous Activity under Anesthesia

For the analysis of spontaneous activity (Figure 7), we used the blank periods

between two subsequent stimuli. We analyzed segments of 1 s duration

starting 200 ms after the end of the stimulus (to avoid contamination by off

responses to the stimulus). Approximately 75% of the blank periods were

long enough to be included given these criteria, resulting in an average of

1,188 ‘‘trials’’ (min: 1,148; max: 1,225).

https://github.com/datajoint
http://toliaslab.org/publications/ecker-et-al-2014
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GLM Accounting for Network State

Following Kelly et al. (2010), we fitted a GLM with the low-pass-filtered LFP as

input (Figure 8). The model is defined in Equation 2 in the main text. As for the

GPFA model above, we used spike counts in 100 ms bins and fitted the model

independently for each stimulus condition. The contribution of the stimulus

was captured by the parameter aðtÞ, which represents the PSTH. The LFP pre-

dictor uðtÞ was the bandpass-filtered (0.5–5 Hz) LFP. We averaged the LFP

over all tetrodes that recorded at least one single unit in this session and sub-

tracted the average stimulus-evoked response. The latter ensured that LFP

weights captured only fluctuations around the average response to the stim-

ulus. For analysis of the weights (Figures 8C and 8D), we averaged the weights

of each neuron across all conditions in which it was included (firing rate >0.5

spikes/s). The cross-correlation between LFP and network state estimated

by GPFA (Figures 8A and 8B) was computed by first subtracting the average

of each measure within each trial (i.e., it is the correlation of the fluctuations

within trials rather than across trials).

Analysis of Depth of Anesthesia

To assess slow changes in brain state, we performed spectral analysis on the

LFP (Figure 9). We averaged the LFP across all tetrodes that recorded at least

one single unit in this session and computed the spectrogram using 200 over-

lapping windows (16 trials or�1min per window, with 50%overlap). The spec-

trogram was computed on the continuous LFP trace including both evoked

and spontaneous activity; no average stimulus response was subtracted.

Following Goard and Dan (2009), we computed a power ratio to assess brain

state. The power ratio was defined as the power in the low-frequency band

(0.5–2 Hz) divided by that in the gamma band (30–70 Hz). To quantify the over-

all correlation in the network, we computed the variance of the network state

variable inferred by the GPFA model in the same windows as we used for the

spectral analysis above. For the population analysis (Figure 9E), we used 20

nonoverlapping windows to quantify both the power ratio and the overall

correlation. This smaller number was chosen as a trade-off between temporal

resolution and reducing noise by including more data.

SUPPLEMENTAL INFORMATION
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Figure  S1.  Toy  example  where  the  normalization  suggested  by  Bair  et  al.  (2001)  fails  (related  

to   Fig.  4F).   A,   Auto-­‐‑correlation   function   with   oscillatory   component.   B,   Cumulative   auto-­‐‑

correlation   (𝐴!!(𝜏),   Eq.  S2)   integrated   away   from  zero   as   suggested  by  Bair   et   al.   (2001).  Note  

that   the   integral   becomes  negative,   leaving  𝑟!!"(𝜏)   ill-­‐‑defined   for   𝜏 ≈ 20.  C,   Eigenvalue   spec-­‐‑

trum  of  auto-­‐‑correlation  matrix.  All  eigenvalues  are  positive,  demonstrating  that  this  is  an  ad-­‐‑

missible  auto-­‐‑correlation  structure.  
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Figure  S2.  Simulation  to  illustrate  issues  with  extracting  the  timescale  of  correlation  by  inte-­‐‑

grating  cross-­‐‑correlogram  (related  to  Fig.  4F).  Firing  rates  were  sinusoidally  modulated  in  time  

(frequency:   3.4  Hz,  mimicking   simple   cell   responses   to   a   drifting   grating).   Correlations  were  

induced  by  multiplying   the   firing  rate  of  each  neuron  by  a  common,   time-­‐‑varying  gain   (as   in  

Fig.  6)  with  auto-­‐‑correlation   timescale  of   200  ms   (Gaussian  kernel,   as   in  Fig.   3A).   Spikes  were  

generated  as  inhomogeneous  Poisson  processes.  A,  cumulative  correlation  coefficient,  comput-­‐‑

ed  by  integrating  the  cross-­‐‑correlogram  and  using  different  normalizations.  Red  line:  normali-­‐‑

zation  from  Bair  et  al.  2001  (Eq.  S2).  Black  line:  using  our  suggested  normalization  (Eq.  S7).  Gray  

dashed  line:  ground  truth  (auto-­‐‑correlation  of  common  gain,  rescaled  to  match  in  magnitude).  

B,   Average   shuffle-­‐‑corrected   auto-­‐‑   and   cross-­‐‑correlation   functions,   𝐶!"(𝜏).   The   stimulus   fre-­‐‑

quency   is   visible   in   the   auto-­‐‑correlogram,   but   not   in   the   average   cross-­‐‑correlogram   since  we  

averaged  over  pairs  uniformly  covering  the  full  range  of  preferred  phases.  
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Figure  S3.  Timescale  of  correlation  extracted  from  CCG  (related  to  Fig.  4F).  A,  Average  cross-­‐‑

correlation  function  for  pairs  recorded  by  different  tetrodes.  Black:  our  anesthetized  data;  blue:  

reproduced  from  Smith  &  Kohn  2008  (their  Fig.  4F,  distance:  2  mm)  and  rescaled  to  match  our  

level  of  correlations.  Orange:  reproduced  from  Kohn  &  Smith  2005  (their  Fig.  3C,  best  orienta-­‐‑

tion)  and  rescaled  such  that  magnitude  of  the  slow  component  matches  our  data.  B,  Timescale  

of  correlations  extracted  by  integrating  cross-­‐‑correlogram.  Red:  𝑟!!"  using  the  original  normali-­‐‑

zation  suggested  by  Bair  et  al.  2001  (Eq.  S2),  which  underestimates  the  underlying  timescale  (see  

Section  1.2).  Blue:   same  analysis,   reproduced   from  Smith  &  Kohn  2008  and  rescaled  such   that  

the  total  spike  count  correlation  matches  our  data.  Black:  𝑟!!"  using  our  suggested  normaliza-­‐‑

tion  (Eq.  S7),  which  yields  a  less  biased  estimate  of  the  timescale,  more  consistent  with  the  par-­‐‑

ametric  estimate  obtained  from  the  GPFA  model  (Fig.  4F).  

  
     



1 Estimating  the  timescale  of  correlations  
A  previous   study   in  anesthetized  monkey  V1   (Smith  &  Kohn  2008)   reported   that  most  of   the  

correlations  arise  on  a   timescale  of   less   than  100  ms.  At   first   sight   this  appeared  somewhat  at  

odds  with  our  results.  Therefore,  we  investigated  the  method  to  identify  the  timescale  of  corre-­‐‑

lations  (Bair  et  al.  2001)  used  in  this  study  in  detail.  We  found  that  it  leads  to  a  systematic  un-­‐‑

derestimation   of   the   underlying   timescale   of   correlations.   In   Section   1.2  we   explain  why   this  

underestimation  occurs.  We  suggest  a  simple  correction  to  the  original  definition,  which  over-­‐‑

comes  this  problem  (Section  1.3).  In  addition,  we  compare  our  data  with  those  of  Smith  &  Kohn  

2008  using  the  same  analysis  method  on  both  datasets  to  show  that  the  two  datasets  are  in  fact  

consistent  with  respect  to  timescale  (Section  1.4).  

1.1 Analysis  methods:  overview  
When  measuring   correlations  between  neurons,   a  natural  question   to  ask   is  what   is   the   time-­‐‑

scale  of  those  correlations.  The  most  general  approach  for  addressing  this  question  is  to  consid-­‐‑

er  the  cross-­‐‑correlation  function  if  a  time-­‐‑domain  representation  is  desired  or  the  cross-­‐‑spectrum  if  

a   frequency-­‐‑domain   representation   is   desired.   The   latter   leads   to   coherence   analysis,   which  

provides  a  frequency-­‐‑resolved  correlation  coefficient  between  two  time  series  (e.g.  Brockwell  &  

Davis  2009,  p.  436;  Box  et  al.  2008,  p.  554).  Which  method  is  most  appropriate  depends  on  the  

assumptions  about  the  mechanism  generating  the  correlations  and  what  aspect(s)  of  the  correla-­‐‑

tion  function/cross  spectrum  one  is  interested  in.  

A  number  of  methods  have  been  used  in  the  literature  to  estimate  the  timescale  of  correla-­‐‑

tions,   including   integrating   the   cross-­‐‑correlogram   (e.g.   Bair   et   al.   2001;   Smith   &   Kohn   2008),  

computing  correlations  in  bins  of  different  sizes  (Reich  et  al.  2001;  Hansen  et  al.  2012),  coherence  

analysis    (Mitchell  et  al.  2009),  or  parametrically  modeling  a  common  input  (this  study).  

1.2 Issues  with  extracting  timescale  from  cross-­‐‑correlograms  
Bair   et   al.   (2001)   suggest   a  method   to   extract   the   timescale   of   correlations   by   integrating   the  

cross-­‐‑correlogram.  The  reasoning  behind  this  analysis  is  that  if  correlations  extend  only  over  a  

finite  range  of  time,  the  integral  will  saturate  at  some  point.  This  point  of  saturation  provides  an  

estimate  of  the  timescale.  In  addition,  when  integrating  over  the  full  length  of  a  trial,  this  meth-­‐‑

od  is  equivalent  to  computing  spike  count  correlations.  

  Let  𝐶!"(𝜏)   denote   the   shuffle-­‐‑corrected   cross-­‐‑correlation   function  of  neurons   j   and   k   (see  

Bair  et  al.  2001  for  details).  We  define  the  cumulative  cross-­‐‑correlation  
4  

  



𝐴!"(𝜏) = 𝐶!" 𝑡 𝑑𝑡.
!

!!
   (S1)  

The  cumulative  correlation  coefficient,  𝑟!!",  was  originally  defined  by  Bair  et  al.  (2001)  as  

𝑟!!" 𝜏 =
𝐴!" 𝜏

𝐴!! 𝜏 𝐴!! 𝜏
   (S2)  

While  intuitively  appealing,  this  definition  is  not  ideal  for  several  reasons,  which  are  related  to  

the  normalization  constant  in  Eq.  S2.    

First,  unlike  what  one  would  expect   from  a   correlation  coefficient,  𝑟!!"(𝜏)   is  not  guaran-­‐‑

teed  to  be  between  –1  and  1.  In  fact,  it  is  not  even  guaranteed  to  exist,  since  the  cumulative  auto-­‐‑

correlation  𝐴!!(𝜏)   can   become   zero   or   even  negative   for   perfectly   valid   auto-­‐‑correlation   func-­‐‑

tions   (Fig.  S1).  This   tends   to  be   the  case   if   there   is  a  strong  oscillatory  component   in   the  auto-­‐‑

correlation  (Fig.  S1A).  

  Second,   if   a   temporally   fluctuating   common   input   drives   the   correlations   between   two  

neurons,   the   definition   in   Eq.   S2   will   not   recover   the   underlying   temporal   structure   of   this  

common  input,  but  instead  a  biased  version  of  it.  The  magnitude  of  the  bias  will  increase  with  

the  strength  of   the  correlation  (Fig.  S2A).  The  reason  for   this  effect  can  be  understood  by  con-­‐‑

sidering  a  simple  toy  example:  

𝑥! = 𝑧! + 𝑐,   (S3)  

where  𝑥!   (𝑗 = 1,2)  is  the  activity  of  each  neuron,  𝑧!  is  Gaussian  white  noise  (with  unit  variance  

and  uncorrelated  both  in  time  and  across  neurons)  and  c  is  a  slowly  fluctuating  input  common  

to  both  neurons  with  temporal  auto-­‐‑correlation  function  𝐾(𝜏).  Under  this  model,  the  timescale  

of  the  correlation  between  𝑥!  and  𝑥!  is  identical  to  the  timescale  of  the  fluctuations  in  c,  since  it  

is  exclusively  the  effect  of  c  that  generates  the  correlations.  The  auto-­‐‑  and  cross-­‐‑correlation  func-­‐‑

tions  of  𝒙  are    

𝐶!! 𝜏 = 𝐶!! 𝜏 = 𝐾 𝜏 + 𝛿(𝜏),                                                    𝐶!" 𝜏 = 𝐾 𝜏 .   (S4)  

Here,  𝛿 𝜏 = 1  if  𝜏 = 0  and  𝛿 𝜏 = 0  otherwise.  We  see  that  the  cross-­‐‑correlation  𝐶!"  is  equal  to  

the   auto-­‐‑correlation   𝐾   of   the   common   input.   Consequently,   any   well-­‐‑defined   measure   𝑟!!"  

should  in  this  case  be  proportional  to  the  integral  of  𝐾:  

𝑟!!" 𝜏 ∝ 𝐾 𝑡 𝑑𝑡
!

!!
   (S5)  
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  However,  plugging  Eq.  S4  into  the  definition  of  𝑟!!"  above  (Eq.  S2),  we  obtain  

𝑟!!" 𝜏 =
𝐾 𝑡 𝑑𝑡!

!!

1 + 𝐾(𝑡)𝑑𝑡!
!!

   (S6)  

Since  the  integral  of  𝐾  enters  both  the  numerator  and  the  denominator,  the  shape  of  𝑟!!"  does  

not  directly  reveal   the   timescale  of   the  underlying  correlations.   It   is  also  easy   to  see   from  this  

equation  why  the  bias  becomes  larger  for  strong  correlations  (Fig.  S2):  while  for  small  correla-­‐‑

tions   the  denominator   is   always   close   to   1   (and   therefore   the   normalization   is   approximately  

correct),   for   strong   correlations   the   denominator   grows   at   the   same   speed   as   the   numerator,  

which  in  this  case  leads  to  an  overestimation  of  the  correlations  for  small  𝜏.  

A  third,  more  subtle  effect  arises  when  responses  are  modulated  periodically  (such  as  e.g.  a  

simple  cell   response   to  a  drifting  grating)  and   the  common   input  acts  multiplicatively.   In   this  

case  both  cross-­‐‑  and  auto-­‐‑correlograms  will  contain  a  periodic  component  (Fig.  S2B).  Although  

the  oscillatory  component  in  the  cross-­‐‑correlogram  averages  out  over  many  neurons  that  have  

random  phase  relations,  it  remains  in  the  auto-­‐‑correlogram.  This  causes  the  somewhat  oscillato-­‐‑

ry   shape   in   the   cumulative   correlation  when  using   the  normalization   in  Eq.   S2   (Fig.  S2A,   red  

line,  most   evident   for   strong   correlations),  which   is   also  visible   in  both  our   anesthetized  data  

and  that  of  Smith  &  Kohn  2008  (Fig.  S3B).  

1.3 Improved  normalization  for  extracting  the  timescale  
The   issues   outlined   above   arise   because   the   normalization   depends   on   𝜏,   which   distorts   the  

shape  of  the  cross-­‐‑correlation  function.  Since  the  cross-­‐‑correlation  function  already  contains  all  

the  information  about  the  timescale  no  normalization  is  needed  to  extract  it.  The  main  reasons  

for  normalization   (in   the  context  of  estimating   the   timescale)  are   to  create   the  correspondence  

with  spike  count  correlations  when   integrating  over   the  entire   trial  or   to  ensure   that  pairs  are  

weighted  equally  when  averaging  over  many  pairs.  One  possible  normalization,  which  main-­‐‑

tains  the  correspondence  with  spike  count  correlations  but  does  not  distort  the  timescale,  is  the  

following:  

𝑟!!" 𝜏 =
𝐴!" 𝜏

𝐴!! 𝑇 𝐴!! 𝑇
   (S7)  

Here,  T  is  chosen  such  that  𝐴!! 𝑇   is  an  unbiased  estimate  of  the  cell’s  variance.  This  means  that  

T  must  be  large  enough  that  𝐴!! 𝑇   is  saturated,  i.e.   𝐴!! 𝑇 ≈ 𝐴!!(∞) .  The  easiest  choice  is  to  
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use  the  length  of  the  entire  trial.  This  is  what  we  use  for  the  analysis  presented  in  Fig.  S3B  be-­‐‑

low.   In   this  case   (and   if   the  correlations  do  not  extend  beyond  T)  𝑟!!" 𝜏   will  converge   to   the  

spike  count  correlations  for  𝜏 → 𝑇.  Note,  however,  that  𝑟!!" 𝜏   is  not  guaranteed  to  be  bounded  

between  −1  and  1  for  𝜏 < 𝑇.  The  interpretation  as  a  correlation  coefficient  thus  applies  only  for  

large  enough  𝜏.  

1.4 Timescale  of  correlations  under  anesthesia  
Smith  &  Kohn  (2008)  report  that  in  their  anesthetized  recordings  most  of  the  noise  correlations  

arise  on  timescales  of  100  ms  or  less  (their  Fig.  4B),  which  seems  to  be  somewhat  at  odds  with  

our  findings.  However,  this  apparent  discrepancy  is  not  caused  by  a  difference  in  the  data,  but  

instead   by   the   different   analysis   methods   that   were   used.   The   shape   of   the   average   cross-­‐‑

correlation  function  in  our  anesthetized  data   is  very  similar   to  that  reported  previously  under  

anesthesia  (Fig.  S3A,  Kohn  &  Smith  2005;  Smith  &  Kohn  2008).  In  addition,  when  we  used  the  

originally  suggested  method  (Eq.  S2;  Bair  et  al.  2001;  Smith  &  Kohn  2008)  to  analyze  our  data,  

we  obtained  similarly  low  estimates  of  the  timescale  (Fig.  S3B,  compare  the  red  and  blue  lines).  

Given   this   finding   and   the   general   agreement   between   our   anesthetized   data   and   those   by  

Smith  &  Kohn  (2008)  we  conclude  that  the  two  datasets  are  also  fairly  consistent  with  respect  to  

timescale.    

Importantly,   when   we   applied   the   corrected   formula   (Eq.   S7),   the   results   of   the   cross-­‐‑

correlation   analysis   were   consistent   with   the   parametric   approach   using   the   GPFA   model  

(Fig.  S3B,  black  line;  Fig.  4F).  
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2 Supplemental  Experimental  Procedures  

2.1 Surgical  procedure  in  anesthetized  monkeys  
After  premedication  with  Dexamethasone  (0.25–0.5  mg/kg;  48  h,  24  h  and  on  the  day  of  the  pro-­‐‑

cedure)   and   atropine   (0.05  mg/kg   prior   to   sedation),   animals  were   sedated  with   a  mixture   of  

ketamine  (10  mg/kg)  and  xylazine  (0.5  mg/kg).  During  the  surgery  for  implanting  chamber  and  

tetrode  drive   anesthesia  was  maintained  using   isoflurane   (0.5–2%)   and   fentanyl   (7  mg/kg/hr).  

This  surgery  was  performed  in  a  dedicated  operating  room  under  aseptic  conditions.  A  craniot-­‐‑

omy  was  made  directly  anterior  to  the  occipital  ridge  approximately  20  mm  lateral  to  the  mid-­‐‑

line,  resulting  in  a  recording  location  over  V1  in  the  lower  visual  field  at  eccentricities  between  1  

and  4  degrees.  A  cylindrical  chamber  was  positioned  around  the  craniotomy  and  secured  with  

bone  cement.  After  performing  a  durotomoy  (7  mm  diameter)  in  the  center  of  the  craniotomy  a  

bone  replacement  plate  and  the  tetrode  drive  were  inserted  into  the  chamber  and  secured  with  

screws.  At  this  point  the  entire  assembly  was  sealed  so  there  was  no  risk  of  infection.  After  the  

chamber  had  been  placed  the  monkeys  were  transferred  to  the  recording  setup,  where  anesthe-­‐‑

sia  was  switched  to  opioids  and  the  tetrodes  were  lowered  into  the  brain.  

2.2 Data  acquisition,  spike  detection  and  spike  sorting  

2.2.1 Data  acquisition  

For  one  of  the  two  awake  animals  spikes  were  extracted  online  by  threshold  crossing  and  short  

waveform  segments   (1  ms,  32  samples)  were  saved.   In  addition,   local   field  potentials  were  ac-­‐‑

quired  continuously  at  2  kHz.  In  the  second  awake  animal,  data  were  acquired  continuously  at  

32  kHz  as  broadband  signal  (0.5–16  kHz)  using  a  custom-­‐‑build  system  (Ecker  et  al.  2010).  For  all  

three  anesthetized  animals,  data  was  acquired  continuously  at  30  kHz  as  broadband  signal  (0.3–

15  kHz)  using  a  commercially  available  recording  system  (Blackrock  Microsystems).  

2.2.2 Spike  detection  

Except  for  one  of  the  awake  animals,  spikes  were  detected  offline  when  the  signal  on  any  of  the  

four   channels   crossed   a   threshold   of   five   times   the   standard   deviation   on   the   corresponding  

channel.  To  avoid  artificial  inflation  of  the  threshold  in  the  presence  of  a  large  number  of  high-­‐‑

amplitude   spikes   we   used   a   robust   estimator   of   the   standard   deviation,   given   by  

𝜎 = median( 𝑥 )/0.6745   (Quiroga  et  al.  2004).  Spikes  were  aligned  to  the  center  of  mass  of   the  
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continuous   waveform   segment   above   half   the   peak   amplitude.   Code   for   spike   detection   is  

available  online  at  https://github.com/atlab/spikedetection.  

2.2.3 Spike  sorting  

To  extract  features  for  spike  sorting,  we  performed  principal  component  analysis  on  the  extract-­‐‑

ed  waveform  segments  (individually  for  each  channel).  This  step  reduced  the  data  to  three  di-­‐‑

mensions   per   channel,   resulting   in   a   12-­‐‑dimensional   feature   vector.   To   deal   with   potential  

waveform   drift,   we   use   fit   mixture  model   that   uses   Kalman   filters   to   track   changing   cluster  

means  over  time  (Calabrese  &  Paninski  2011).  We  model  the  shape  of  each  cluster  by  a  multi-­‐‑

variate   t-­‐‑distribution   (Shoham   et   al.   2003)  with   a   ridge-­‐‑regularized   covariance  matrix.   In   our  

experience,  mixture  models  often  use  multiple  mixture  components  with  similar  means  to  mod-­‐‑

el   a   single   neuron,   particularly   so   for   large   datasets.   Presumably   this   occurs   because   clusters  

tend  to  have  relatively  heavy  tails  (due  to  spike  misalignment  and/or  overlapping  spikes)  while  

the  cluster  centers  are  modeled  well  by  Gaussians.  Since  such  clusters  have  to  be  grouped  man-­‐‑

ually  (which  is  error-­‐‑prone)  and  provide  no  substantial  benefit  (the  goal  is  to  identify  neurons,  

not  to  obtain  a  perfect  density  model),  it  is  desirable  to  obtain  a  model  that  uses  only  one  mix-­‐‑

ture   component   per   cluster.  We   found   that   this   can   be   accomplished   relatively   effectively   by  

using  t-­‐‑distributions  with  small  degrees  of  freedom  (we  use  df  =  5),  forcing  the  algorithm  to  use  

a  distribution  with  relatively  heavy  tails.  

The  number  of   clusters  was  determined  based  on   a  penalized   average   likelihood,  where  

the  penalty  term  was  a  constant  cost  per  additional  cluster.  Although  this  penalty  term  is  a  heu-­‐‑

ristic   that   requires   tuning   the  cost  parameter,  we   found   this  approach,   in  combination  with   t-­‐‑

distributions   and   regularized   covariance   estimates   (as   described   above),   to   result   in   smaller  

numbers  of  clusters  and  therefore  less  manual  processing  than  our  previous  approach  based  on  

the   Bayesian   Information   Criterion   (BIC).   Code   for   spike   sorting   is   available   online   at  

https://github.com/aecker/moksm.  

Single   unit   isolation   can   be   assessed   quantitatively   using   the  mixture  model.   The  model  

provides  a  posterior  distribution  over  class  membership  for  each  spike.  From  this  posterior  we  

estimated   the   fraction   of   false   positive   and   false   negative   assignments   for   each   putative   cell.  

Cells  with  more  than  20%  false  positives  or  false  negatives  as  well  as  those  that  did  not  display  

a   clear   refractory  period  were  usually   grouped   into   the  multi   unit   cluster  during   the  manual  

post-­‐‑processing   step   and   therefore   not   used   for   analysis.   Since   the   focus   of   this   paper   is   on  

global  fluctuations  that  are  distributed  among  many  tetrodes,  spike-­‐‑sorting  errors  are  unlikely  
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to  play  an  important  role  since  they  would  affect  primarily  pairs  recorded  by  the  same  tetrode  

(Ecker   et   al.   2010).   Thus,   to   increase   statistical   power,  we   included   all   units   flagged   as   single  

units   in   the   analysis.   The   sum  of   false   positives   and   false   negatives  was   less   than   10%   of   all  

spikes  for  62%  and  less  than  20%  for  83%  of  all  single  units  in  our  dataset  (awake:  63%  and  82%,  

anesthetized:  61%  and  83%).  

2.3 Assessment  of  recording  stability  
We   assessed   recording   stability   by   computing   the   long-­‐‑term   component   of   the   trial-­‐‑

autocorrelogram  as  described   in   the  main   text.  The   stability   criterion  was   important   since   the  

anesthetized  experiments  were  performed  acutely  and  tetrodes  were  adjusted  every  8–10  hours.  

As  a  consequence,  occasional  recording  instabilities  due  to  tissue  movement  were  unavoidable.  

Such   instabilities  can  cause  changes   in  spike  amplitudes,  which  are  not  a  problem  (as   long  as  

cells  remain  isolated)  since  our  spike-­‐‑sorting  algorithm  can  track  them.  In  addition,  substantial  

changes  in  firing  rates  can  occur,  presumably  because  of  loss  of  isolation,  damage  to  the  cell,  as  

a  general   reaction   to   the  penetrating  electrode,  or   changes   in   excitability  due   to  physiological  

reasons.  If  more  than  one  cell  was  affected  at  the  same  time,  the  first  factor  in  the  GPFA  model  

picked  up   the   instability   instead  of   the  global  network   state.  This  was   easy   to  detect   since   in  

such  a  case  most  cells  had  weights  close  to  zero  while  only  the  ones  affected  by  the  instability  

had  positive  weights  and  the  timescale  of  the  process  was  very  slow.  Removing  unstable  cells  

solved   this  problem  and   resulted   in  more   consistent   estimates   of  weights   and   timescale.  One  

obvious  consequence  of  this  procedure  that  should  be  mentioned  is  that  if  cells  displayed  drifts  

in   firing   rates   over   slow   timescales   due   to   physiological   reasons   then   our   analysis  would   by  

definition  not  recover  these  slow  processes.  

2.4 Variance  explained  and  residual  correlations  in  GPFA  model  
To  evaluate  the  fraction  of  variance  explained  (VE;  Fig.  3)  and  the  residual  correlation  structure  

(Fig.  5)  we  first  fitted  the  model  parameters  (c,  R,  and  τ)  on  the  training  set.  We  then  estimated  

the  network  state  x  on  the  test  set  using  the  E  step  of  the  EM  algorithm  (Yu  et  al.  2009  Eq.  A6).  

Next,  we  re-­‐‑estimated  the  residual  covariance  using  the  M  step  of  the  EM  algorithm  while  keep-­‐‑

ing  all  other  parameters  fixed.  Here,   in  contrast  to  the  training  set,  we  did  not  enforce  R   to  be  

diagonal  but  estimated  a  full  covariance  matrix,  which  we  denote  by  Q.  Since  we  worked  on  the  

test   set   the  original   equations  had   to  be  modified   (compare   to  Yu  et   al.   2009  Eq.  A9).  We  ob-­‐‑

tained:  
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𝑄 =
1
𝑇

𝒄 𝑥!! 𝒄! − 𝒄 𝑥! 𝒚!! − 𝒚! 𝑥! 𝒄! + 𝒚!𝒚!!
!

!!!

   (S8)  

This  matrix  can  be  thought  of  as  the  residual  covariance  matrix  after  the  network  state  has  been  

accounted  for.  Variance  explained  was  then  computed  as  

VE! = 1 −
𝑄!!

Var 𝑦!
   (S9)  

where  all  quantities  in  Eq.  S9  were  computed  on  the  test  set.  This  ensured  that  VE  was  not  over-­‐‑

fitted  and  was  nearly  unbiased.  

Although  we   fitted   the  model   on   spike   counts   in   100-­‐‑ms  windows,   residual   correlations  

and   variance   explained   can   also   be   evaluated   for   larger   counting   windows.   Denote   by  

𝒛 = 𝒚!!
!!!   the  spike  count  of  an  entire  trial  and  define  𝒄 = 𝒄, 𝒄,⋯ , 𝒄   (T  times).  Then  we  obtain    

Cov[𝒛] = 𝒄𝐾𝒄! + 𝑇𝑅,   (S10)  

and  for  the  residual  covariance  

𝑄 𝒛 = 𝒄 𝒙𝒙! 𝒄! − 𝒄 𝒙𝒙! 𝒛! − 𝐳 𝒙𝒙! 𝒄! + 𝒛𝒛!,   (S11)  

where  𝒙 = 𝑥!,⋯ , 𝑥! !.  Variance  explained  (Fig.  3)  and  residual  noise  correlations  (Fig.  5)  were  

calculated  for  500  ms  windows  since  this  was  the  maximum  available  in  the  awake  dataset.  
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